
Application Note

I. Elastic Constants of TiB₂

This application shows the calculation of the elastic constants of TiB_2 , a hexagonal structure.

1. Retrieve structure from database

The structure of TiB₂ is taken from ICSD #30418.

2. Optimization of unit cell

The unit cell of TiB₂ is optimized using the following parameters (taken directly from the *Job.out* file as displayed by the JobServer): **Structure Optimization**: **Mallow Relax Atom Positions**, **Allow cell volume to change**, **Allow cell shape to change**, **Convergence** of **0.001 eV/Ang**, **Increase Plane wave cutoff** with **Normal Precision**. In the **SCF** panel put **set spacing between k-points** to **0.25 /Ång**, with **Use odd size grids**, increase the **SCF convergence** to **1.0e-07**

The resulting cell parameters are:

Parame	eter	Original	change	Final	%
	а	3.030000	0.004963	3.034963	0.2
	b	3.030000	0.004963	3.034963	0.2
	С	3.230000	-0.004577	3.225423	-0.1
ā	a7pha	90.000000	0.000000	90.000000	0.0
	beta	90.000000	0.000000	90.000000	0.0
9	gamma	120.000000	0.000000	120.000000	0.0

3. Calculation of Elastic Constants

Load the optimized structure with **File Open Previous Calculation** and keep the computational parameters from the lattice optimization, change the type of calculation to **MT - Elastic Properties** and **Strains** of 1%, with **Relax atoms of strained structures** unchecked.

Strain	Spacegroup	DOF degrees of freedom
		
unstrained:	P6/mmm	0
plus	for each strain	
+e1:	Cmmm	1 degree of freedom for relaxation of atoms
-e1:	Cmmm	1
+e3:	P6/mmm	0
-e3:	P6/mmm	0
+e4:	C2/m	2

Checking \blacksquare Relax atoms of strained structures includes relaxation of atoms in strained cells, where changes of the space group allow atoms to move, in the example of TiB₂ these are strains +e1, -e1, and +e4.

Experimental and computed elastic constants of TiB ₂	C ₁₁	C ₁₂	C ₁₃	C ₃₃	C ₄₄
Gilman and Roberts [1]	690	410	320	440	250
Spoor et al [2]	660	48	93	432	260
relaxed atoms of strained structures	649	72	102	457	258
This calculation	651	70	102	457	258

Note: The large value of C_{12} given by Gilman and Roberts appears not to be a simple typographical error.

The total computing time of this calculation was 7 minutes on an Intel Core 2 Duo with 2 GHz, including relaxation of atoms in strained structures requires 10 minutes total.

- 1. **Gilman, J J and Robert, B W.** *J Appl Phys.* 1961, Vol. 32, p. 1405.
- 2. **Spoor, P S, et al.** *Appl. Phys. Lett.* 1997, Vol. 70, p. 1959.